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ABSTRACT:
Space-time modulation opens the door for unprecedented wave behavior control, such as nonreciprocal wave

manipulation. Here is proposed a one-dimensional space-time modulated membrane system aiming to realize a kind

of acoustic metamaterial with space-time modulated effective density. Three different approaches, namely, the effec-

tive medium method, transfer matrix method, and time-domain simulation, are applied to analyze the acoustic

response of the system under a monochromatic incidence. Results show that the proposed metamaterial can support

two different nonreciprocal acoustic functionalities, namely, unidirectional parametric amplification and parametric

frequency conversion, when different modulation profiles are enforced. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

Research on space-time modulated media dates back to

the 1950s, when space-time modulation was first studied in

transmission lines to break the time-reversal symmetry and

realize nonreciprocal parametric amplification.1–6 Compared

to structures or materials that have spatially dependent prop-

erties, space-time modulation breaks the time-reversal sym-

metry of systems and then can break reciprocity, thus

offering rich possibilities in wave manipulation and control,

which are highly desired in a number of applications, such as

sensing, imaging, and communication. However, despite the

growing interest of nonreciprocal transmission in electromag-

netics, acoustics, and many other physical fields, space-time

modulation remained a scientific concept and had not been

applied to practical dynamic wave control for a very long

time.

Recently, thanks to the development of modulation

techniques, space-time modulation has rejuvenated and

attracted considerable attention through introduction into

modern electromagnetics,7–20 acoustics,21–37 and mechan-

ics.38–42 For example, in airborne acoustics, by combining

temporal modulation and spatial bias of several resonators, a

lot of interesting and useful nonreciprocal devices have been

proposed, such as acoustic isolators,24,26,28 circulators,21,22

amplifiers,29,32 and metasurfaces.30,31 Among these space-

time modulated acoustic metamaterials, one of the most

commonly utilized elements is the Helmholtz resonator with

varying cavity.24–27 Another promising and feasible struc-

ture is membrane utilizing the piezoelectric effect.30

In this work, we trace back to the space-time modula-

tion of effective medium properties and focus on an acoustic

metamaterial whose density varies in both space and time.

As was derived in the previous research,25 acoustic unidirec-

tional parametric amplification and parametric frequency

conversion would take place in such a space-time modulated

metamaterial with a strategy for proper modulation of the

density. However, how can we realize the space-time modu-

lation of density? In this work, we’d like to give a feasible

scheme. Membrane is commonly used in acoustic metama-

terials to realize unusual densities43 because of its resonance

effect. Its resonance characteristic is not only closely related

to the membrane itself, but also remarkably affected by the

tension applied to it. So, we propose a membrane system

and tune its effective density in a space-time varying fashion

by controlling the membrane’s surface tension. Three theo-

retical and numerical approaches, effective medium method,

transfer matrix method, and time-domain simulation, are

adopted to analyze the acoustic response of this membrane

system from different perspectives. Two different modula-

tion profiles are applied to the system to realize unidirec-

tional parametric amplification and parametric frequency

conversion functionalities, respectively.

II. METAMATERIAL REALIZATION OF SPACE-TIME
MODULATED DENSITY

Consider a membrane system, as shown in Fig. 1(a).

The system consists of a circular tube and a series of mem-

branes that are edge-clamped and uniformly spaced in the

tube. The radius of the tube and membranes is R, and the

distance between two adjacent membranes is D. The tube is

considered to be sound rigid to ensure one-dimensional (1D)

wave propagation, and the background medium is air, whose

a)This paper is part of a special issue on “Wave phenomena in periodic,
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density and sound speed are qair and cair, respectively. The

membranes are made of silicone rubber with thickness d,

density qm, Young’s modulus Em, and shear modulus Gm.

This membrane system is a typical periodic structure and

can be divided into a series of unit cells, as shown in Fig. 1(b).

Due to the resonance of the membrane, each unit cell can be

considered as medium of same volume with unusual effective

density, as shown in Fig. 1(c), and the retrieval method of the

effective density will be discussed in detail in Sec. III.

In order to modulate the membranes’ resonance character-

istics and thus modulate the effective density of the units,

time-varying surface tensions in the form of Ti ¼ T0½1
þm cosðXt� /iÞ�2 are applied to the membranes. In the

expression, i (¼1, 2,…) is the ordinal number of the membrane.

T0 and m are the static surface tension and modulation depth. X
and /i are the modulation frequency and phase, which control

the modulation profile in time and space, respectively.

III. THEORETICAL AND NUMERICAL METHODS

In this work, we adopt three different methods to ana-

lyze the acoustic response of this space-time modulated sys-

tem under a monochromatic incidence, namely, effective

medium method, transfer matrix method and time-domain

simulation. To simplify the analysis, loss and nonlinear

effect are not taken into consideration in all three methods.

A. Effective medium method

The first method is called effective medium method,

which predicts the acoustic effects under space-time modu-

lation of density. In this method, the system is divided into a

series of unit cells, as shown in Fig. 1(b), so that each unit

cell can be treated as an effective medium whose interaction

with incoming acoustic waves is dictated by its effective

density, as shown in Fig. 1(c).

With previous preparation, we first get the effective

acoustic parameters of each unit cell through a retrieval

technique.44 In this retrieval technique, we can use pressure

acoustic frequency domain simulation to get the reflection

coefficient R and transmission coefficient T for a plane wave

normally incident on a single unit cell. The effective refrac-

tive index n and impedance z are obtained from R and T as

n ¼
arccos

1� R2 þ T2

2T

� �
x

cair

D
;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ RÞ2 � T2

ð1� RÞ2 � T2

s
:

8>>>>>>>>><
>>>>>>>>>:

(1)

The effective density q and compressibility (inverse of bulk

modulus) C are then calculated from n and z as

q ¼ qairzn;

C ¼ n

qairc
2
airz

:

8<
: (2)

Owing to the space-time-varying surface tension

applied to the membranes, the above membrane system can

be turned into a space-time modulated medium whose den-

sity satisfies the form of qðxÞ ¼ q0ðxÞ½1þ mqðxÞ cosðXt
� bxÞ�. q0, mq, X, and b are the static density (without mod-

ulation), modulation depth of density, modulation fre-

quency, and phase gradient, respectively. All of these

parameters can be obtained from the above retrieval tech-

nique through a parametric sweep study. The compressibil-

ity of this medium, on the other hand, can be assumed to

remain constant, C¼C0, as the membranes’ resonance has

much less effect on it.

According to our previous work,25 there will exist two

acoustic modes in such a space-time modulated medium

under a monochromatic incidence along the positive direc-

tion of the x axis (i.e., positive direction in the context). The

frequencies of the incident mode and generated mode are x1

and x2, respectively. If the modulation frequency and phase

gradient satisfy

X ¼ x1 þ x2;

b ¼ k1 þ k2;

(
(3)

the normalized acoustic pressure amplitude along the propa-

gation direction in the medium will be

P1ðxÞ ¼ coshðaxÞ;

P2ðxÞ ¼
z2

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mq1

k1q1

mq2
k2q2

s
sinhðaxÞ;

8>><
>>: (4)

where

z1 ¼ zðx1Þ; z2 ¼ zðx2Þ; q1 ¼ qðx1Þ;
q2 ¼ qðx2Þ; mq1

¼ mqðx1Þ; mq2
¼ mqðx2Þ;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mq1

mq2
k1k2

p
4

:

FIG. 1. (Color online) Acoustic metamaterial based on membranes. (a)

Schematic of acoustic metamaterial. (b) Unit cell structure. (c) Effective

medium of the unit cell.
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Note the weak modulation assumption that P1ðxÞ and P2ðxÞ
are slowly varying: Thus, @2P1ðxÞ=@x2 and @2P2ðxÞ=@x2 are

negligible. From Eq. (4), we can see that the amplitudes of

both modes are growing exponentially. While if the wave is

incident along the negative direction of x axis (i.e., negative

direction in the context), it will just pass through as in the

unmodulated membrane system. This unusual effect is

called unidirectional parametric amplification.

In addition, if the modulation frequency and phase gra-

dient satisfy

X ¼ x1 � x2;

b ¼ k1 � k2;

(
(5)

the normalized acoustic pressure amplitude along the propa-

gation direction in the medium will be

P1ðxÞ ¼ j cosðaxÞj;

P2ðxÞ ¼
z2

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mq1

k1q1

mq2
k2q2

s
j sinðaxÞj:

8>><
>>: (6)

From Eq. (6), we can see that the amplitudes of two modes

are periodically varying, which is called parametric fre-

quency conversion.

B. Transfer matrix method

In our previous work, we’ve found that a series of

Floquet components would be generated when a monochro-

matic acoustic wave is incident into the space-time modu-

lated system.26–28 The frequency of each harmonic is

xn ¼ xþ nX, while n ¼…, –2, –1, 0, þ1, þ2,… represents

the order of harmonics. In the above effective medium

method, an important assumption is that there will only exist

two acoustic modes in such a space-time modulated medium

under a monochromatic incidence, which means only the 0th

incident mode and the �1st order generated harmonics are

taken into consideration. This assumption makes the solution

to the wave equation of this space-time modulated medium

simple and helps us predict the unidirectional parametric

amplification and parametric frequency conversion effects.

However, ignoring of the high-order harmonics will make

the prediction inaccurate or even wrong. So we introduce

the second method, i.e., transfer matrix method, which pro-

vides fast and accurate calculation of general space-time-

varying system and allows the investigation of high-order

modes.27

In the transfer matrix method, our membrane system is

divided into two types of acoustic elements, membrane and

waveguide. Each element can be represented by a transfer

matrix, and the corresponding derivation is completed in our

previous work.29 Here, we give the expression directly. The

equivalent impedance of the modulated membrane is

ZmðxÞ ¼ �jxqmd J0

xR

cm

� �� �.
J2

xR

cm

� �� �
:

J0 and J2 are the 0th order and 2nd order Bessel functions of

the first kind. Under weak modulation (m � 0:1 in this

space-time modulated system), we can expand the imped-

ance at cm0 as

ZmðxÞ ¼ Zm0ðxÞ þ mZv0ðxÞ cosðXt� /Þ; (7)

where

Zm0 ¼ Zmjcm¼cm0
; Zv0 ¼ cm0

@Zm

@cm

����
cm¼cm0

and

cm0 ¼
ffiffiffiffiffiffiffiffi
T0

qmd

s
:

The modulated impedance can then be represented by a

transfer matrix, namely,

Mm ¼

..

. ..
. ..

. ..
. ..

. ..
.

� � � 1 Zn�1
m0 0

mZn
v0

2
ej/ 0 0 � � �

� � � 0 1 0 0 0 0 � � �

� � � 0
mZn�1

v0

2
e�j/ 1 Zn

m0 0
mZnþ1

v0

2
ej/ � � �

� � � 0 0 0 1 0 0 � � �

� � � 0 0 0
mZn

v0

2
e�j/ 1 Znþ1

m0 � � �

� � � 0 0 0 0 0 1 � � �

..

. ..
. ..

. ..
. ..

. ..
.

2
66666666666666666666664

3
77777777777777777777775

; (8)

where Zn
m0 ¼ Zm0ðxnÞ and Zn

v0 ¼ Zv0ðxnÞ. In addition, the transfer matrix of the waveguide can be written directly,
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Mw ¼

..

. ..
. ..

.

� � � Mn�1
w 0 0 � � �

� � � 0 Mn
w 0 � � �

� � � 0 0 Mnþ1
w � � �

..

. ..
. ..

.

2
6666666664

3
7777777775
; (9)

where

Mn
w ¼

cosðknDÞ jzair sinðknDÞ
j

zair
sinðknDÞ cosðknDÞ

2
64

3
75: (10)

Here, zair ¼ qaircair is the characteristic impedance of air,

kn ¼ xn=cair is the wave number of the nth order wave, and

D is the length of each section of waveguide.

With the transfer matrix for the membrane and wave-

guide, the transfer matrix for the entire system can be

calculated by multiplying the transfer matrices for all com-

ponents. Hence, the acoustic response of the system can be

obtained. With the transfer matrix method, we can, in princi-

ple, take all orders of harmonics into account. However, in

practice, the matrix shall be truncated to account only for

the orders that are non-negligible.

C. Time-domain simulation

The third method, unlike the frequency domain analysis

employed in the aforementioned two methods, is a numeri-

cal approach conducted in the time domain. It emulates the

experimental setup and serves to validate the anticipated

unidirectional parametric amplification and parametric fre-

quency conversion. This time-domain simulation is imple-

mented in COMSOL and adopts a MULTIPHYSICS setup where

both pressure acoustic module and membrane module are

used.

First, a 1D model of the membrane system is built up,

which is divided into three sections. The most important

section is the modulated section, where the space-time mod-

ulated initial stress Ti ¼ T0½1þ m cosðXt� bzÞ�2 is applied

to the membranes. The other two sections before and after

the modulated section are called upstream and downstream,

respectively, where the membranes’ initial stress is constant

T0. In the unidirectional parametric amplification case, the

length of the modulation section is 0.25 m, containing 50

space-time modulated unit cells. In the parametric frequency

case, the modulation length is 0.5 m, which contains 100

unit cells instead. The length of the upstream and down-

stream is 1 m, both containing 200 unmodulated unit cells.

Then, a time-dependent study is conducted and a sinu-

soidal wave is incident from the upstream. The element size

is predefined normal, and the time step is 1� 10�5 s. Probes

are placed at the interface of adjacent unit cells in the modu-

lation section to record the corresponding pressure. In the

unidirectional parametric amplification case, we simulate

the wave incident from both positive and negative directions

to demonstrate the distinct interactions with space-time

modulation, where the negative incident direction was simu-

lated by switching the sign of the modulation wave number

to �b. In the parametric frequency conversion case, only

the positive direction propagation is interested.

Finally, acoustic signals recorded by the probes are ana-

lyzed. In the unidirectional parametric amplification case, a

total of 51 probes are utilized, resulting in the recording of

51 acoustic signals. To investigate the steady-state wave

behavior, each signal’s waveform is captured from 0.08 to

0.12 s and subsequently subjected to Fourier transform for

spectrum analysis. In the parametric frequency conversion

case, there are 101 probes, and their respective waveforms

from 0.10 to 0.14 s are processed accordingly. By conduct-

ing spectrum analysis on each detection point within the

modulation section, we can ascertain variations in each of

the frequency components along the propagation direction

and thereby demonstrate the unidirectional parametric

amplification and parametric frequency conversion.

IV. RESULTS AND DISCUSSION

In this work, we realize the above density modulated

media via membrane system, as shown in Fig. 1. The param-

eters in our system are given as follows: qair ¼ 1:21 kg/m3,

cair¼ 343 m/s, qm ¼ 1300 kg/m3, Em ¼ 117:5 kPa, Gm

¼ 40 kPa, R¼ 7.5 mm, d¼ 0.2 mm, D¼ 5 mm, T0 ¼ 1 MPa

�d, and m¼ 0.05. To start with, the band structure of the

unit cell is first calculated, as shown in Fig. 2.

A. Unidirectional parametric amplification

According to the effective medium method, to realize

the unidirectional parametric amplification, we should

design the modulation parameters X and k to satisfy Eq. (3).

In this case, the two frequency components of interest

are x1 ¼ 2p� 2050 rad/s for the incident wave and

x2 ¼ 2p� 1550 rad/s for the generated wave. The corre-

sponding wave numbers are k1 ¼ 241:6 rad/m and

k2 ¼ 98:4 rad/m, as shown in Fig. 2. So, we can get the

modulation frequency and phase gradient of the system as

X ¼ 2p� 3600 rad/s and b ¼ 340:0 rad/m. Then, the effec-

tive density and compressibility of the modulated unit cell

are computed through the retrieval technique, and the results

are shown in Fig. 3. It can be observed that with such kind

FIG. 2. (Color online) Dispersion curve of the unit cell.
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of time-varying surface tension, the effective density is sinu-

soidally modulated and the modulation period T ¼ 2p=X:
We can get the static density and modulation depth for two

modes as q10 ¼ ð65:8þ 49:3Þ=2 ¼ 57:55 kg/m3, q20 ¼ ð21:8
þ 7:9Þ=2 ¼ 14:85 kg/m3, mq1 ¼ ð65:8� 49:3Þ=ð2� 57:55Þ
¼ 0:143; and mq2¼ð21:8�7:9Þ=ð2�14:85Þ¼ 0:468; respec-

tively. In contrast, the modulation of compressibility is much

weaker and negligible, which provides support for the assump-

tion of constant compressibility in this method. Note the slight

difference between C1 and C2 is mainly attributed

to frequency dependence of membrane resonance, where

C1¼Cðx1Þ and C2¼Cðx2Þ: Now we have all of the parame-

ters needed for the effective medium method to predict the

acoustic response in this space-time modulated medium. The

acoustic pressure amplitude variation along the propagation in

both the positive and negative directions is illustrated in red in

Fig. 4.

To verify the prediction of the effective medium

method and demonstrate the unidirectional parametric

amplification in this space-time modulated membrane sys-

tem, we use the transfer matrix method and time-domain

simulation to calculate the acoustic response in frequency

and time domain, respectively. Results are illustrated in blue

and green in Fig. 4, respectively. Note that the pressure

amplitude from the time-domain simulation is normalized to

compare with the results from the other two methods. As

expected, in the positive direction, obvious exponential

growth of both frequency components is observed. In the

negative direction, only the incident frequency component

exists, and its pressure amplitude remains unchanged. It is

also observed that the results from transfer matrix method

and time-domain simulation agree well with each other,

while the growth rate from the effective medium method is

a bit larger. This deviation can be attributed to the imperfect

discretization of the acoustic metamaterial by a finite num-

ber of unit cells, which also results in the pressure amplitude

oscillation.

B. Parametric frequency conversion

Now we come to the parametric frequency conversion

case. All parameters of the membrane system stay

unchanged, except the modulation frequency X and phase

gradient b, which should satisfy Eq. (5). In this case, the two

modes of interest are x1 ¼ 2p� 2050 rad/s for the incident

wave and x2 ¼ 2p� 2000 rad/s for the generated wave. The

corresponding wave numbers are k1 ¼ 241:6 rad/m and k2 ¼
227:7 rad/m, marked in Fig. 2. So, we can get the modulation

frequency and phase gradient of the system as X ¼ 2p� 50

rad/s and b ¼ 13:9 rad/m. Similarly, the effective density and

compressibility of the unit cell are calculated and illustrated

in Fig. 5. We can get the static density and modulation depth

for two modes as q10 ¼ ð65:8 þ 49:3Þ=2 ¼ 57:55 kg/m3,

q20¼ð60:5þ45:1Þ=2¼52:8 kg/m3, mq1¼ð65:8�49:3Þ=ð2
�57:55Þ¼0:143; and mq2¼ð60:5�45:1Þ=ð2�52:8Þ¼0:146;
respectively. The modulation of compressibility is also much

FIG. 3. (Color online) (a) Effective density and (b) compressibility of the

unit cell under harmonic modulation (unidirectional parametric amplifica-

tion). The red line indicates effective parameters for mode 1 (f1 ¼ 2050 Hz)

and the blue line indicates effective parameters for mode 2 (f2 ¼ 1550 Hz).

FIG. 4. (Color online) Unidirectional parametric amplification effect along

the propagation distance (a) in the positive direction and (b) in the negative

direction. Solid and dashed lines represent modes 1 and 2, respectively.

Red, blue, and green represent three different methods: effective medium

method, transfer matrix method, and time-domain simulation, respectively.
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weaker and negligible. Based on the effective medium

method with above parameters, we can depict the acoustic

pressure amplitude along the propagation direction, as shown

in Fig. 6(a). It is observed that the amplitudes of two modes

are periodically varying, which means the modes are trans-

ferred back and forth along the propagation.

Then, we would like to verify this frequency conversion

effect in the space-time modulated membrane system using

the transfer matrix method and time-domain simulation in

frequency and time domain, respectively. However, we’ve

found that the acoustic response of the membrane system

obtained from both two methods is totally different from the

effective medium method’s prediction, as shown in Figs.

6(b) and 6(c). In the meantime, results from the transfer

matrix method and time-domain simulation agree pretty

well with each other. In Figs. 6(b) and 6(c), it is observed

that there are many other frequency components existing in

this space-time modulated membrane system, rather than

only two modes predicted by the effective medium method.

Results show that in this space-time modulated membrane

system, there does exist a frequency conversion effect, but

this frequency conversion involves a lot of high-order har-

monics and the acoustic energy gradually transfers to the

higher-order harmonics as the wave propagates forward.

Recall that an important assumption in the effective medium

method is that there are only two modes existing in the

space-time modulated medium. These results indicate

the failure of this primary assumption. Yet, why? Why does

the effective medium method work in the unidirectional

parametric amplification while failing in the parametric fre-

quency conversion?

C. Analysis of mode coupling and conversion

The main reason for the effective medium method’s

failure in the parametric frequency conversion case is the

fundamental assumption that there are only two acoustic

modes converting in the system. Results from the other two

methods in Figs. 6(b) and 6(c) both show that there are a lot

of higher-order harmonics in the system, whose proportion

cannot be neglected. These higher-order harmonics’ genera-

tion and conversion can also be explained through Fig. 7.

The green solid line represents all of the acoustic modes

supported by the system, and the red point represents the

incident mode. If there is no modulation in this membrane

system, only the incident mode will transmit in the system

and no other modes will appear. When a sinusoidal modula-

tion is applied to the system, it offers the possibility for the

generation of some certain modes, xn ¼ x0 þ nX(n ¼…,

–2, –1, 0, 1, 2,…), represented by a magenta dashed line in

Fig. 7. In principle, mode conversion can occur if the modes

coexist on the dispersion curve (green solid line) and the

modulation relation (magenta dashed line). An incident

mode can be converted to the other mode as both of them

are supported in this space-time modulated system.

FIG. 5. (Color online) (a) Effective density and (b) compressibility of the

unit cell under harmonic modulation (parametric frequency conversion).

The red line indicates effective parameters for mode 1 (f1 ¼ 2050 Hz) and

the blue line effective parameters for mode 2 (f2 ¼ 2000 Hz).

FIG. 6. (Color online) Parametric frequency conversion effect along the propagation direction calculated by three different methods: (a) the effective medium

method. (b) transfer matrix method, and (c) time-domain simulation. The red line indicates the 0th fundamental frequency (mode 1), the blue line indicates the �1st

harmonic (mode 2), the green line indicates theþ1st harmonic, the black line indicates the�2nd harmonic, and the magenta line indicates theþ2nd harmonic.
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Observing Fig. 7, although there are only two modes that

strictly meet the above condition, other harmonics are also

very close to the dispersion curve, which means they are

also inter-convertible even if it is not ideal conversion.

While in the unidirectional parametric amplification case, as

shown in Fig. 8, the dispersion curve (green solid line) and

the modulation relation (magenta dashed line) are far apart

from each other except for the two points of intersection

(incident mode f1 and generated mode f2), which means no

other harmonics are coupled in. Therefore, in this case the

fundamental assumption that there are only two acoustic

modes converting in the system is valid.

V. CONCLUSION

To conclude, a mathematical model of highly idealized

membrane system is proposed, completely ignoring loss and

nonlinearity. With space-time modulated surface tension

applied to membranes, this system can be considered as an

acoustic metamaterial with space-time modulated density. In

theory (effective medium method), two special acoustic phe-

nomena, unidirectional parametric amplification and paramet-

ric frequency conversion, would occur in the metamaterial

under two specific modulation profiles. Two different

approaches, transfer matrix method and time-domain simula-

tion, are applied to analyze the acoustic response of the system

from the frequency and time domain, respectively.

Calculations indicate that this space-time modulated mem-

brane system does support unidirectional parametric amplifica-

tion and parametric frequency conversion in theory. However,

the acoustic response of the membrane system obtained from

the transfer matrix method and time-domain simulation are not

entirely the same as those predicted from the effective medium

method, especially for the parametric frequency conversion

case. The difference in results between the effective medium

method and the other two methods is attributed to the imper-

fect approximation of the membrane system as a density-

modulated metamaterial and some ideal assumption in the

effective medium method’s derivation, which can be explained

through the model coupling and conversion analysis.

In this work, we mainly communicate an interesting idea

of effective density space-time modulation using tension-

controlled membranes and discuss the interesting acoustic

phenomena occurring in this space-time modulated metama-

terial. The main limitation of the model proposed in this

work lies in its failure to account for loss and nonlinearity.

Further, we only analyze the unidirectional parametric ampli-

fication and parametric frequency conversion under two spe-

cific modulation profiles. As this space-time modulated

membrane system offers many degrees of freedom and sup-

ports many more modulation profiles, it can go far beyond

these two primary functionalities by applying other modula-

tion strategies. What is more, it is technically difficult to con-

trol membranes’ surface tension directly, especially in space

and time simultaneously. A feasible experiment scheme is to

use a piezoelectric membrane and convert the tension’s con-

trol into electrical control. The corresponding relation

between the membrane’s effective surface tension and the

external voltage applied needs further study.

In brief, we hope that the proposed membrane-based

space-time modulated model can serve as the foundation for

various research that require both spatial and temporal con-

trol of the effective density.
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FIG. 8. (Color online) Dispersion curve and mode coupling of the metama-

terial based on membrane (unidirectional parametric amplification). The red

and blue dots represent modes 1 and 2 in the system, respectively.

FIG. 7. (Color online) Dispersion curve and mode coupling of the metama-

terial based on membrane (parametric frequency conversion). The red and

blue dots represent modes 1 and 2 in the system, respectively.
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